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Abstract 
The neutron reflectivity of low-frequency vibrating 
nearly perfect crystals has been measured as a func- 
tion of the neutron wavelength, the displacement field 
being parallel to the diffraction vector. In Bragg sym- 
metrical geometry, the experimental results can be 
explained using a dynamical theory of diffraction by 
one-dimensionally distorted crystals [Guigay (1986). 
Acta Cryst. A42, 481-483]. In Laue symmetrical 
geometry, it is shown that it is necessary to distinguish 
the cases of very small and less-small amplitudes of 
vibration. 

I. Introduction 
The aim of the present paper is to investigate the 
wavelength dependence of the reflectivity in sym- 
metrical diffraction geometries (Bragg or Laue), for 
crystals displaying a one-dimensional deformation 
along the scattering vector. These conditions can be 
approximated by a perfect vibrating crystal such that 
the frequency of the vibrations is low enough to 
consider the displacement of atoms seen by the 
incident neutrons as a static one. In this paper absorp- 
tion effects are assumed to be negligible. 

For Bragg symmetrical geometry, when the Bragg 
angle 08 is varied by changing the neutron wavelength 
A, the integrated reflectivities po and PK of perfect 
and ideally imperfect crystals are both proportional 
to tan 08. This property can be shown from the well 
known formulas: 

PK = QI = Qlo/ sin 08 (1) 

p o = Q A  tanh ( l /A) .  (2) 
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Here, 1 i's the path length in the crystal along the 
incident direction, lo is the crystal thickness and A is 
the extinction length defined as 

i 

a = Vc/AF (3) 

where Vc is the volume of the unit cell and F is the 
structure factor of the considered reflection. The ratio 
l /A does not depend on 08 since A/2 sin 08 is the 
spacing of the reflecting planes. Q is, as usual, the 
kinematical reflectivity per unit path length: 

A A3F 2 

Q -  A 2 sin 20B V 2 sin 208 (4) 

It is easily seen from (1) and (4) that 

I o F 2 ( A )  3 
PK = ~ - ~  ~ tan08 (5) 

is indeed proportional to tan OB. QA is also found to 
be proportional to tan 08 and, consequently (since 
I/A does not depend on 08), po also follows this 
dependence. Under what conditions should the reflec- 
tivity of a neither perfect nor ideally imperfect crystal 
also be proportional to tan 08 ? As shown earlier from 
Takagi-Taupin equations (Guigay, 1986), this is real- 
ized if the component of the displacement field in the 
direction of the diffraction vector h is uniform in any 
plane parallel to the surface. 

In symmetrical Laue geometry, the kinematical 
reflectivity is proportional to (tan 08) 2 since 1= 
/o/COS 0n in this case, but the proportionality to tan 08 
is still valid for a thick perfect crystal. Our purpose 
was then to test the ranges of validity of these 
tan 08 and (tan 08) 2 dependences. The experiments 
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described in § 3.2 show that the (tan 08) 2 dependence 
is satisfied even when the reflectivity is still far from 
the kinematical value which might be obtained only 
with very large vibration amplitudes. The limiting 
case of the transition from the reflectivity of a slightly 
deformed crystal to the reflectivity of a perfect one 
for Laiie diffraction geometry have been recently 
described theoretically by Kulda & Lukfig (1989). 

Approximate treatments of neutron diffraction by 
vibrating crystals have been given by Michalec, 
Chalupa, Sedlfikov~i, Mikula, Petr~ilka & Zelenka 
(1974) and by Michalec, Mikula, Vr~ina, Kulda, 
Chalupa & Sedlfikov~i (1988). A more general treat- 
ment has been given by Kulda, Vr~ina & Mikula 
(1988). 

2. The symmetrical Bragg case 

2.1. Theoretical background 

Let us recall the Takagi-Taupin equations (Takagi, 
1962, 1969; Taupin, 1964), using the oblique coordin- 
ate system (So, Sh) defined by the directions of the 
incident and diffracted plane waves corresponding to 
the exact Bragg orientation: 

ODo 

OSo 
~ =  i exp ( ih .  u(s0, Sh)}Dh(So, Sh) 

c) Dh 
A = i exp { - i h .  u(s0, Sh)}Do(so, Sh) 

OSh 

(6) 

where U(So, Sh) is the displacement field describing 
the crystal deformation and h the diffraction vector. 

Following the theoretical treatment of Guigay 
(1986), it is convenient to use the rectangular coordin- 
ates (x, z) such that (Fig. 1) 

x = (So+ Sh) COS 08 
(7) 

z = (So- Sh) sin 08. 

-g 

to I 

l z ~So 
Fig. 1. Illustration of the displacement field u,(x, z) corresponding 

to a rotation of  the crystal around the origin of coordinates in 
the symmetrical Bragg case. Since e is small, the angles (u~, h) 
and (OM, Ox) are equal. So h .  u~ = hex. The position of point 
0 is, of course, arbitrary; this is verified from the facts that h. u, 
does not depend on z and that only the derivative he of hex is 
present in (11). 

We shall consider a one-dimensional deformation 
such that the phase factor exp (ih.  u) is a function 
~0(z) of the single variable z (no dependence on x). 

The integrated reflectivity is obtained by consider- 
ing the crystal rotating around its Bragg position for 
a fixed incident plane wave. This rotation defined by 
e = 0 - 0 s  can be viewed as a displacement field 
u~(x, z). From simple geometrical arguments illus- 
trated in Fig. 1, it can be seen that 

h.  u~(x, z) = hex (8) 

which must be added to ¢(z);  our basic equations 
are then 

A cos 0B aDo/aX+ A sin 0B aDo/aZ 

= exp {iq~(z) + ihex}Dh(e, x, z) 
(9) 

A cos 0B ODh/ax--A sin 08 ODh/aZ 

=exp  {-iq~(z)-  ibex}Do(e, x, z). 

With the boundary conditions (lo being the crystal 
thickness) 

Do(e, x, 0) = 1 
(9') 

Dh(e , X, Io) = O, 

we have indicated in (9) and (9') the e dependence 
of the wave amplitudes Do(e, x, z) and Dh(e, x, 7.). 

Let us introduce the transformation 

Xo( e, x, z )=  Do( e, x, z) 
(10) 

Xh( e, x, z) = Dh(e, X, z) exp {iehx}. 

We get 

A cos 080Xo/aX + A sin 080Xo/aZ 

= i exp {i~p(z)}Xh(X, Z) (11) 

A COS 08{OXh/OX -- iheXh} - A sin 08 OXh/OZ 

= i exp {-kp(z)}Xo(x,  z). 

All coefficients in these equations do not depend on 
x. The boundary conditions which are 

Xo(e, x, 0) = 1 
(11') 

X h (  ~, x, 1o) = 0 

also do not depend on x. The required solutions are 
therefore functions Xo.h(e, Z) of one position variable 
z instead of two (x, z). Equations (11) can therefore 
be simplified as: 

A sin 08 dXo/dz  = i exp {i~o(z)}Xh(e, Z) 

--iehA cos 08Xh - A sin 08 dXh/  dZ (12) 

= i exp {-i~o(z)}Xo(e, z). 

As the coefficient (A sin 08) does not depend on 08, 
the plane-wave reflectivity p(e) = IXh(e, 0)12 depends 
on e (and on 08) through the coefficient eAh cos 08 
only. Therefore, the integrated reflectivity obtained 

t 
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by integration of p(e) over e is proportional to 
(Ah cos 0B) -~ and consequently to tan 0B. / 
2.2. Experiments 

t~ 15 
The experiments were carried out on the $20 

diffractometer at ILL, using a G e ( l l l )  crystal as 
monochromator. The investigated crystal was an SiO2 
plate (30 x 30 x 5 mm) with the normal direction along 
[110]. The neutron diffraction properties of this crys- 
tal have been studied previously by Chalupa, 10 
Michalec & Galociova (1969) for a single wavelength 
(1.54,~). The whole crystal surface was illuminated 
by the neutron beam, as illustrated in Fig. 2(a). The 
frequency of the thickness vibrations was 506 kHz. 

It is simpler to measure for each wavelength the 
ratio of the intensities diffracted by the vibrating and 5 
the non-vibrating crystals, instead of measuring the 
absolute reflectivities (this would require a measure- 
ment of the incident-beam intensity). This ratio R is 
a function of the vibration amplitude (Fig. 3 a), which 
is proportional to the intensity i of the current flowing 
through the crystal. No diminution of the increasing 0 
rate of R was observed in the available range of i, 
indicating that our measurements are far from the 
saturation regime (kinematical limit) which would be 
obtained with very large values of the vibration 
amplitude. / 

From the theoretical analysis of the preceeding 
section, R is expected to be independent of A. This t~ 
is in very good agreement, within the limits of the 
experimental errors, with the results shown in Fig. 1s 
3(b). 

Diffraction topographs were used to check the 
homogeneity of the crystal reflectivity. For ideal 

(a) 

tl_ ,_ 

(b) 

(hk[ \ ~ ~  

I I I  

Fig. 2. Schematic arrangement for neutron diffraction by a vibrat- 
ing single crystal: (a) thickness vibration mode; (b) longitudinal 
vibration mode. 
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Fig. 3. (a) The dependence of the ratio R of the integrated reflec- 
tivities of  a thickness mode of  vibrating and non-vibrating quartz 
crystals on the effective value of the exciting high-frequency 
current i flowing through the crystal for the neutron wavelengths 
h = 1.1 ~ (O) and A =2-3/~  (+) (symmetrical Bragg reflection 
geometry). (b)  R versus the neutron wavelength A for different 
values of the high-frequency current i: • 1.25 mA, O 2.5 mA, 
+ 3.75 mA, A 5.0 mA and [] 6.25 mA. 
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conditions, we should expect topographs of uniform 
intensity. This was not the case, but the experiments 
are, however, in good agreement with predictions 
based on these ideal conditions. This means that our 
theoretical analysis can be applied separately to 
different parts of the crystal in which the crystal 
deformation can be assumed to be homogeneous. 

3 .  T h e  s y m m e t r i c a l  L a u e  c a s e  

3.1. Theoretical background 

Consider the time-dependent displacement field 
u(x, t) of resonant longitudinal vibrations along the 
x direction in a crystal bar, as illustrated in Fig. 2(b): 

u(x,t)=uosin(Trx/L)sin(tot), (13) 

where L is the length of the bar and to the circular 
frequency depending on the sound velocity c~ in the 
crystal (to = ~rcx/L). 

The scattering vector is parallel to the x direction, 
with displacement gradient u ' ,  and the movement of 
the reflecting planes with velocity u', results in an x- 
and t-dependent shift of the interplanar spacing 
d [d ~ d + Ad(x, t)]. In terms of the first derivatives 
of u(x, t), 

Ad(x, t)=d{u'+u't/vsin 0B}, (14) 

where v is the neutron velocity. The second term in 
(14) represents the Doppler and aberration effects. 
Since v is inversely proportional to ;t, v sin 0a does 
not depend on )t. Using the relation A = 2d sin 0n, we 
get the following x- and t-dependent shift AO(x, t) 
of the Bragg angle 

AOB(x, t) = - t a n  OB{u'+ u',/v sin 0~}. (15) 

The lateral displacement ~x and the time of flight 8t 
along a neutron path in the crystal are proportional 
to tan 0n and are assumed to be much smaller than 
L and t=21r/to respectively: 

8x = lo tan 0~ ,~ L 
(16) 

l0 to 
8t - - -  - - -  tan 0B ~ T. 

vcos0B vs in0~  

Therefore the corresponding variation ~(AOa), 

~(/10B) = [ 0 ( ~ 0 B ) / O x ] ~ x  + [ 0 ( A O B ) / O t  ]~t, 

can be expressed in terms of second derivatives of 
u(x,t): 

~(AOB) =- -  (tan OB)21o{U"xx + ( 2 / v  sin OB)u'~, 

+ ( 1 / v  sin 0~)2u~',} (17) 

and is thus proportional to (tan 0B) 2. 
Kulda (1984) has shown that the integrated reflec- 

tivity of deformed crystals can be expressed as the 
product of the angular width I~ (A 0~ )1 by the probabil- 
ity of being reflected for a neutron fulfilling the Bragg 

condition somewhere along its trajectory in the crys- 
tal. He has found 

p=IS(AO~)I{1--exp[--pK/Ia(AOB)I]} (18) 

in which PK is the kinematical limit. This is an 
approximation which supposes that 18(~0~)1 largely 
exceeds the Darwin width corresponding to a perfect 
crystal and that the Bragg condition can be fulfilled 
only once along any trajectory [otherwise, secondary 
extinction effects, as discussed by Mikula, Michalec, 
Chalupa, Sedl~ikov~i & Petr~ilka (1975) should occur]. 
This last condition is satisfied in the case of our 
vibrating crystal because of conditions (16). The x- 
and t-dependent reflectivity p(x, t) of the vibrating 
crystal is thus expected to be proportional to (tan 0~) 2 
if the vibration amplitude is not very small. This result 
is also valid for the integrated reflectivity which is 
obtained by integrating p(x, t) over x and t and which 
is to be compared to the measurements. 

3.2. Experiments 

In these Laue-case experiments we have used longi- 
tudinal vibrations (Fig. 2) which have much larger 
amplitudes Uo than the thickness vibrations used in 
the Bragg-case experiments, and it was possible to 
indicate the values of Uo obtained by microscope 
observations instead of the intensity of the alternative 
current flowing through the crystal or through the 
piezoceramic transducer. 

Our results for a perfect silicon crystal are shown 
in Figs. 4(a) and (b). The steady increase of the 
intensity ratio R as a function of the vibration ampli- 
tude Uo shows that we are far from the kinematical 
limit in the whole available Uo range. Since the perfect- 
crystal reflectivity is proportional to tan 0B, the ratio 
R/ tan  0~ should be independent of A if the vibrating- 
crystal reflectivity is proportional to (tan 0B) 2. It is 
shown in Fig. 4(b) that the relative changes of the 
measured values of R / t an  0B are indeed very small 
except for the lowest considered value of Uo. 

Similar results for a crystal of quartz which is 
known to be less perfect than the crystal of silicon 
but enabled us to use much larger vibration ampli- 
tudes are displayed in Figs. 5(a) and (b). Inspection 
of Figs. 4(a) and 5(a) reveals that the tendency of 
the intensity vs u0 to reach saturation [as predicted 
by (18)] is more visible in the case of the quartz 
crystal. In fact, the saturation would be fully achieved 
only by using extremely large vibration amplitudes, 
which could not be experimentally realized in our 
studies. For our treatment we have chosen a minimum 
value u0* in the linear range of the intensity depen- 
dence and in Fig. 5(b) we have considered the ratio 
po(uo)/pv(u*o) for u0 larger than u*. The results show 
that this ratio does not depend on A, even for vibration 
amplitudes large enough that the tendency to satur- 
ation starts to be present. This suggests that the 
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Fig. 4. (a) R versus the vibration amplitude u o of a longitudinally 
vibrating silicon bar for different values of h: • 1.1 A~, O 1.4 .~, 
+ 1.7 A, A 2.0 A, and [] 2.3 A (symmetrical Laue transmission 
geometry). (b) R/tan 0a versus neutron wavelength. R is the 
ratio of the reflectivities of the vibrating and non-vibrating crys- 
tals. The full curve represents the variations of 1/tan 0B. These 
results show the relative changes of R/tan 0a as a function of 
A. Vibration amplitude Uo: [] 4"4 i~m, 4. 3.6 p.m, • 2.8 p.m, © 
2 ~m, x 1.2 p.m, • 0-4 p.m (symmetric Bragg geometry). 
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Fig. 5. (a) R vs the vibration amplitude u 0 of a longitudinally 
vibrating quartz bar for different values of A: • 1.1 ~,  © 1.4 ,~, 
+ 1.7 .~, A 2.0 ,~ and [] 2.3 ,~ (symmetric Laue transmission 
geometry). (b) The ratio of the integrated reflectivities of the 
longitudinally vibrating quartz crystal p~(Uo) with respect to 
pv(U*) vs h for different values of Uo: • 4.5 ~m, 0 6 g.m, + 
10 ~m, [] 17-5 ~m and u* =3 ~m. 
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(tan OB) 2 dependence of the reflectivity which holds 
for the kinematical limit is also satisfied in the range 
of the vibration amplitudes above the value Uo*. This 
is in agreement with our theoretical prediction based 
on (18). 

The authors are grateful to Dr R. Michalec for 
kindly lending the quartz crystals and to Mr A. 
Dvorak for his help with the preparation of the 
manuscript. 

4. Concluding remarks 

We have investigated the dependence on the neutron 
wavelength of the integrated reflectivity of perfect 
and nearly perfect vibrating crystals in symmetrical 
diffraction geometries, the vibration vector u being 
always parallel to the diffraction vector h. We have 
verified the predictions of the wave-optical theory 
developed for the Bragg case and which is valid for 
any value of the vibration amplitude, from the perfect 
crystal to the kinematical limit. In the Laue case, our 
measurements could be used to discuss the rather 
large range of validity of (18) which is a simple 
approximation for the reflectivity of a deformed 
crystal. 
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Euklidische Normalisatoren fiir trikline und monokline Raumgruppen bei spezieller Metrik 
des Translationengitters 
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Abstract 
A listing of the Euclidean normalizers for triclinic 
and monoclinic space groups having translation lat- 
tices with specialized metric is given. These nor- 
malizers have not been included in previous tabula- 
tions. For convenience, in the case of monoclinic 
space groups, only the second setting (c-axis unique) 
is considered and the metric of the cells is restricted 
within certain limits which warrant that all specialized 
cases and all cell choices according to International 
Tables for Crystallography [(1987) Dordrecht: 
Kluwer] are included. 

Die zunehmende Bedeutung des Konzepts der eu- 
klidischen und affinen Normalisatoren von Raum- 
gruppen wird auch durch die Aufnahme entsprechen- 
der Tabellen in die neueste Auflage des Bandes A der 

International Tables for Crystallography verdeutlicht 
(Koch & Fischer, 1987). Ebenso wie in friiheren 
Zusammenstellungen (Hirshfeld, 1968; Gubler, 
1982a, b; Fischer & Koch, 1983) sind dort die 
euklidischen Normalisatoren aber nur fiir solche 
Raumgruppen aufgefiihrt, deren Translationengitter 
keine speziellen metrischen Eigenschaften haben. 
Entspricht bei einem bestimmten Raumgrup- 
penexemplar die Gittermetrik aber einer h/Sheren 
Kristallfamilie, d.h. geh6rt die Punktgruppe des Git- 
ters zu einer anderen Familie als die Raumgruppe 
selbst, dann kann der zugeh6rige euklidische Nor- 
malisator ebenfalls eine h6here Symmetrie haben als 
es dem Normalfall fiir diesen Raumgruppentyp 
entspricht. 

Der euklidische Normalisator einer jeden Raum- 
gruppe ist eine Untergruppe ihres affinen Nor- 
malisators. Beide Normalisatoren sind fiir den 
allgemeinen Fall, d.h. bei nicht spezialisierter Metrik 
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